Una aproximación práctica a las redes neuronales artificiales
|
AutorEduardo Francisco Caicedo BravoIdentificadores:
Ingeniero Electricista de la Universidad del Valle. Máster en Tecnologías de la Información en Fabricación de la Universidad Politécnica de Madrid y Doctor en Ingeniería de la misma Universidad, en el área de Informática Industrial, España. Profesor Titular y Profesor Distinguido de la Universidad del Valle, Director del Grupo de Investigación Percepción y Sistemas Inteligentes (PSI). Autor de varios libros y artículos científicos, conferencista invitado en eventos nacionales e internacionales y profesor visitante en universidades internacionales. Ha trabajado proyectos con COLCIENCIAS, La Unión Europea, el CYTED, la Confederación Suiza y empresas nacionales. Áreas de Interés: Instrumentación Electrónica, Inteligencia Computacional y Robótica, SmartGrids. |
||||
|
AutorJesús Alfonso López SoteloIdentificadores:
Ingeniero electricista, Universidad del Valle, Magíster en automática, Universidad de Valle, Doctor en ingeniería, Universidad del Valle. Trabajó como profesor en la Universidad del Valle, Pontificia Universidad Javeriana y actualmente Universidad Autónoma de Occidente. Ha realizado diversidad de investigaciones en áreas como: Control automático, Aplicaciones de la inteligencia computacional, enseñanza del control automático y de la inteligencia computacional. Es miembro activo del grupo de investigación en Energías: GIEN. |
Digital: descarga y online - EPUB
Catálogo Programa Editorial Univalle:
Catálogo Programa Editorial Univalle:
Capítulo 1
Generalidades sobre redes neuronales artificiales
Introducción
Breve reseña histórica
De la neurona biológica a la neurona artificial
La neurona biológica
La neurona artificial
Procesamiento matemático en la neurona artificial
Red neuronal artificial
Arquitecturas de redes neuronales artificiales
Redes monocapa
Redes multicapa
Redes feedforward
Redes recurrentes
El aprendizaje en las redes neuronales artificiales
Aprendizaje supervisado
Aprendizaje no-supervisado
Ejemplo de procesamiento de la información en una red neuronal
Nivel de aplicación
Capítulo 2
Redes neuronales perceptron y adaline
Introducción
Red neuronal perceptron
Arquitectura de un perceptron
Algoritmo de aprendizaje
Red neuronal adaline
Arquitectura
Algoritmo de aprendizaje
Limitaciones del perceptron
Aproximación práctica
Construcción de un perceptron usando MATLAB®
Solución de la función lógica AND con un perceptron
Exportando la red neuronal a simulink
Solución de la función lógica AND con UV-SRNA
Clasificador lineal con UV-SRNA
Reconocimiento de caracteres usando el Perceptron
Reconocimiento de caracteres con UV-SRNA
Filtro adaptativo usando una red adaline
Filtrado de señales biomédicas
Filtrado de señales de voz
Proyectos propuestos
Capítulo 3
Perceptron multicapa y algoritmo backpropagation
Introducción
Arquitectura general de un perceptron multicapa
Entrenamiento de un MLP
Nomenclatura del algoritmo backpropagation
Algoritmo backpropagation: regla delta generalizada
Pasos del algoritmo backpropagation
Algoritmo gradiente descendente con alfa variable
Pasos del algoritmo gradiente descendente con alfa variable
Algoritmos de alto desempeño para redes neuronales MLP
Algoritmo de aprendizaje del gradiente conjugado
Algoritmo de aprendizaje levenberg marquardt
Consideraciones de diseño
Conjuntos de aprendizaje y de validación
Dimensión de la red neuronal
Velocidad de convergencia del algoritmo
Funciones de activación
Pre y pos-procesamiento de datos
Regularización
Aproximación práctica
Solución del problema de la función XOR con MATLAB®
Aprendizaje de una función seno con MATLAB®
Aprendizaje de la función silla de montar con MATLAB®
Solución del problema de la XOR con UV-SRNA
Identificación de sistemas usando redes neuronales MLP
Pronóstico de consumo de energía (demanda)
Aplicación a la clasificación de patrones (el problema de IRIS)
Proyectos propuestos
Capítulo 4
Red neuronal de hopfield
Introducción
Memoria autoasociativa bidireccional (BAM)
Arquitectura de la BAM
Memoria autoasociativa
Procesamiento de información en la BAM
Modelo discreto de hopfield
Procesamiento de aprendizaje
Principio de funcionamiento
Concepto de energía en el modelo discreto de hopfield
Ejemplo de procesamiento
Modelo continuo de hopfield
Modelo continuo de hopfield de una neurona
Función de energía para el modelo continuo de hopfield
Aproximación práctica
Red tipo hopfield con MATLAB®
Proyectos propuestos
Capítulo 5
Mapas auto-organizados de kohonen
Introducción
El modelo bioinspirado de kohonen
Arquitectura de la red
Algoritmo de aprendizaje
Consideraciones iniciales
Modelo matemático
Ejemplo
Principio de funcionamiento
Aproximación práctica
Capacidad para reconocer grupos de patrones de un mapa de kohonen
Capacidad de autoorganización de los mapas de kohonen usando MATLAB®
Capacidad de autoorganización de los mapas de kohonen usando UV-SRNA
Clasificación de patrones usando mapas de kohonen
Proyectos propuestos
Capítulo 6
Red neuronal de base radial (RBF)
Introducción
El problema de interpolación
Redes de base radial
Arquitectura de una red de base radial
Entrenamiento de la red RBF
Diferencias entre las redes MLP y RBF
Aproximación práctica
Ejemplo de interpolación exacta con MATLAB®
Aprendizaje de la función XOR
Aprendizaje de una función de una variable
Identificación de la dinámica de un sistema con una red RBF
Proyectos propuestos
Bibliografía
-
-
Impreso
COP $53,000
- Digital (PDF) Gratuito
- Digital (EPUB) Gratuito
-
Impreso
-
-
Impreso
COP $48,000
-
Digital (PDF)
COP $34,000
-
Impreso
-
Ejemplo De Método En Investigaciones Sociales
Autor
Erico Rentería Pérez : Sigmar Malvezzi : Erico Rentería Pérez
2020-
Impreso
COP $78,000
- Digital (EPUB) Gratuito
- Digital (PDF) Gratuito
-
Impreso
-
-
Impreso
COP $20,000
- Digital (PDF) Gratuito
-
Impreso
-
-
Impreso
COP $37,000
- Digital (PDF) Gratuito
-
Impreso
-
-
Impreso
COP $59,000
- Digital (PDF) Gratuito
-
Impreso
-
-
Impreso
COP $28,000
- Digital (PDF) Gratuito
-
Impreso
-
-
Impreso
COP $38,000
- Digital (PDF) Gratuito
-
Impreso
Iniciar sesión